contribution of the lattice modes will mean that the net nuclear motion is three-dimensional even for a diatomic molecule. Thus the one-dimensional model of equation (9) really considers the effect of the internal vibrational mode of a diatomic molecular crystal.

However, if the X-ray and neutron data were sufficiently accurate that one could estimate the halfwidth', σ_j , of the vibrational motion along the bond as well as the bond length shortening, then equations (13) and (1) could be used to find k_1 and k_2 . These constants are of interest theoretically as they indicate to what extent the electrons near the nuclei are involved in bonding in the molecule.

References

BADER, R. F. W. & HENNEKER, W. H. (1967). J. Chem. Phys. 46, 3341.

- BENDER, O. F. & DAVIDSON, E. R. (1966). J. Phys. Chem. 70, 2675.
- BINGEL, W. A. (1963). Z. Naturforsch. 18A, 1249.
- CADE, P. E., SALES, K. D. & WAHL, A. C. (1966). J. Chem. Phys. 44, 1973.
- COPPENS, P. (1970). *Thermal Neutron Diffraction*. Edited by B. T. M. WILLIS. London: Oxford Univ. Press.
- Coulson, C. A. & Thomas, M. W. (1971). Acta Cryst. B27, 1354.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 757.
- HERZBERG, G. (1950). Molecular Spectra and Molecular Structure. Vol. I. Spectra of Diatomic Molecules. Princeton: Van Nostrand.
- HUO, W. M. (1965). J. Chem. Phys. 43, 624.
- MCLEAN, A. D. & YOSHIMINE, M. (1967). Tables of Linear Molecule Wave Functions, Supplement IBM J. Res. Dev.
- PACK, R. T. & BYERS, BROWN, W. (1966). J. Chem. Phys. 45, 556.
- THOMAS, M. W. (1971). Acta Cryst. B27, 1760.

Acta Cryst. (1972). B28, 2212

The Crystal Structure of 3'-Iodobiphenyl-4-carboxylic Acid

By H. H. SUTHERLAND AND M. J. MOTTRAM*

Physics Department, The University of Hull, England

(Received 26 August 1971)

The crystal structure of 3'-iodobiphenyl-4-carboxylic acid $C_{13}H_9O_2I$, has been determined from threedimensional X-ray diffraction data. The crystals are triclinic, space group PI, with unit-cell dimensions a=8.61, b=15.92, c=4.36 Å, $\alpha=92.88$, $\beta=108.82$, $\gamma=90.00^\circ$. The structure, which consists of centrosymmetrical hydrogen-bonded dimers, was refined by block-diagonal least-squares refinement with anisotropic thermal parameters to a residual of 6% for the 1471 observed structure factors. The molecular geometry is compared with that of related compounds.

Introduction

Halogen substitution in the 2 and 2' positions of biphenyl has been shown to produce interplanar angles of approximately 50°. As biphenyl in the solid phase is planar it was of interest to study derivatives with halogen in the 3' position. This paper describes the crystal and molecular structure of 3'-iodobiphenyl-4carboxylic acid.

Experimental

Slow evaporation from toluene produced transparent yellow platelets, very few of which were suitable for a single-crystal X-ray investigation. The observed density at 19°C was measured by the method of flotation using aqueous cadmium n-dodecatungstaborate. Unitcell dimensions were obtained from Weissenberg and precession photographs. Crystal data are given in Table 1.

A single crystal of cross section 0.018×0.005 cm perpendicular to the needle axis corresponding to the c axis of the unit cell was selected. Data for the hk0, hk1, hk2 and hk3 levels of reciprocal space were collected by the multiple film Weissenberg technique using Mo K α radiation to minimize the effect of absorption. The intensity data for the 0kl level were obtained from the same crystal using a precession camera with Mo K α radiation.

Intensities of the spots were measured on a Joyce-Loebl flying-spot densitometer and corrected for Lorentz and polarization factors using the authors' program on an I. C. L. 1905E computer. No correction was applied for absorption.

Determination and refinement of the structure

The hk0 projection of the unit cell was solved from the Patterson projection and refined by a combination

^{*} Present address: Procter and Gamble, Newcastle-upon-Tyne, England.

Table 1. Crystal data

$C_{13}H_9O_2I$	M.W: 324·1	Triclinic
$a = 8.61 \pm 0.01$	$b = 15.92 \pm 0.01$	$c = 4.36 \pm 0.01$ Å
$\alpha = 92.88 \pm 0.08$	$\beta = 108.82 \pm 0.08$	$\gamma = 90.00 \pm 0.08^{\circ}$
$U = 564.7 \text{ Å}^3$	$D_m = 1.89 \pm 0.01 \text{ g.cm}^{-3}$	$D_c = 1.90 \text{ g.cm}^{-3}$
Z=2	F(000) = 312	Cu $K\alpha(\lambda = 1.5418 \text{ Å})$
Mo $K\alpha(\lambda = 0.71069 \text{ Å})$, , , , , , , , , , , , , , , , , , , ,
No absent spectra: spa	ace group $P\overline{1}$ (No. 2)	

Table 2. Observed and calculated structure factors in groups of constant h and l arrangedin columns of k, 10 $|F_o|$ and 10 $|F_c\mathbf{k}$

An unobserved reflexion has a zero in the F_o column.

まい。まいしょしょしょい。	að 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	ましましんとは、ましんしん、しょう、「さんのもったしくしゃしいしんしょう。「さんごんださちでもっしくしょしんしんしんしんしょう。 そうどうでうたくごんだってきっしゃしくしゃしんしんしんしんしんしんしん スピイキャン 5.0.00000	1. tuladzie de 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	, , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	れたまでも、まましくキャレト・ドレト・ド・ド・ド・ドンドロドロドンドンド・ドレト・ドレ・ドレンド、「ドロドレドロドロドロドロドロドロドレビンド」と、「イマドロドアドロドアドロドアドロドアドロドンドロド して、5、8、8、8、8、8、8、8、8、8、8、8、8、8、8、8、8、8、8、	isi sisses verturbuduka utukuto etutukutu tistatettetukut fisatettetukut tistakutukutukutu utukuta tistataisi 14 1888 8888888888888888820 oosioisisesses soosoisisististooni oisooosestisisisestoisestes oosioossistesoooossis 1418888888888888888888880000 etatistaassessistististististaa tistooosestistoistoisestoosestistoosoossistist	audited		salsı		tatatu (aluuluku) saataatiatiatu (aluuluku) aluuluku) aluuluku aluuluku aluuluku aluuluku alaatu (aluuluku) si 20.6111111011011011011011011011111111111		að sest veru sett sett að sest veru stærðsið af ser að sest ser að sest að sest að sest ser sett af sest ser s 2. g.	iseeses
3 617 33M 4 640 577 4 546 517 5 201 577 720 6 547 621 7 626 570 7 627 520 10 207 192 -11 326 207 192 -11 326 20 11 74 330 -12 6 42 -12 6 42	-4 140 124 4 A3 57 -7 0 41 7 144 14 -8 0 22 4 200 197 20 -10 117 92 -10 117 92 -11 152 140 -12 207 194 -12 123 -13 140 135 -13 140 135 -14 154 135 -14 155 135 -14 155 135 -15 155 155 -15 155 155 -15 155 155 -15 155 155 -15 155 155 -15 155	4 0 0 1 0/2 1 3 505 479 3 402 588 4 184 142 4 483 495 5 0 23 5 404 337 6 0 111 8 220 189 7 109 96 8 184 142 7 109 96 8 184 143 8 9 308 8 134 135 9 137 131 8 10 354 10 299 283	10 214 221 -11 454 430 -11 454 430 -11 336 311 -23 40 313 -23 307 334 -23 337 354 -13 337 354 -13 337 354 -14 198 190 -14 198 190 -17 09 -17 09 -17 191 -18 0 -11 09 -17 191 -18 0 -19 0 -	5 205 207 5 205 254 4 540 472 5 122 119 6 05 73 7 237 257 7 140 119 7 40 51 7 140 119 7 14	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	 4 57 924 201 9 224 201 9 00 352 354 10 352 354 10 352 354 10 211 184 (75) 11 430 486 11 430 486 12 498 204 12 498 204 12 498 204 13 108 14 276 237 15 10 103 15 202 177 16 220 186 17 48 (20 186 17 49 111 18 70 83 	0 24 2 0 703 471 1 276 230 1 924 770 2 372 335 2 351 787 3 331 317 817 4 202 826 73 5 367 72 94 5 367 72 94 4 202 826 77 4 77 94 97 4 97 94 97 7 41 31 93 9 200 23 90 9 9 90 24	- 227 204 -7 242 241 -7 242 241 -8 224 241 -8 224 242 -7 242 244 -7 242 244 -7 244 242 -7 244 242 -	10 130 131 11 130 121 12 122 97 13 122 97 14 123 122 97 15 122 97 15 122 97 15 123 122 15 124 135 15 124 125 15 124	6 252 252 - 7 171 110 - 7 397 384 8 222 279 8 161 187 - 8 195 234 9 404 363 - 10 - 0 353 - 10 - 0 353 - 10 - 0 324 - 11 350 134 - 12 128 235 - 12 128 23 - 12 128 2	· 127 127 · 277 324 · 2 77 324 · 2 77 324 · 3 321 272 · 3 150 74 · 4 375 534 · 4 175 131 · 5 54 · 4 175 131 · 5 364 534 · 7 233 215 · 7 254 281 · 7 254 281 · 7 254 281 · 7 234 281 · 7 284 284 281 · 7 284 284 281 · 7 284 284 284 284 284 284 284 284 284 284	4 271 215 6 221 215 7 200 227 24 134 125 7 200 227 25 210 227 25 210 227 25 210 228 25 210 228 10 174 175 10 174 175 11 0 107 -12 0 23 13 0 35 -13 0 35 -14 128 13 136 127 -13 0 35 -14 14 128 -14 146 98	-a Ag 49 a A 25 19 103 44 A -018 3 0 6 22 -19 103 44 A -018 3 0 6 22 -19 103 44 -10 10 103 44 -10 10 10 43 -10 10 10 10 10 10 10 10 10 10 10 10 10 1

of electron-density syntheses and block-diagonal least squares to a residual of R=0.10 where $R=\sum ||F_o|-|F_c||/\sum |F_o|$.

The 0kl projection of the sharpened Patterson gave the z coordinates of the iodine atoms.

A structure factor calculation with the 515 strongest three-dimensional reflexions based on the coordinates of the iodine atoms together with a subsequent three-dimensional electron-density synthesis gave provisional z coordinates for the remaining non-hydrogen atoms.

The trial structure was refined using full threedimensional data by two cycles of three-dimensional Fourier synthesis and structure factor calculations and thereafter by block-diagonal least-squares applied to positional parameters, overall scale factor and individual isotropic thermal parameters to a residual of R =0.10. The structure-factor block-diagonal least-squares program was written by the authors for a 1905E computer. After two cycles incorporating anisotropic thermal parameters defined as

$$\exp\left[-2\pi^{2}(U_{11}h^{2}a^{*2}+U_{22}k^{2}b^{*2}+U_{33}l^{2}c^{*2}+2U_{23}klb^{*}c+2U_{31}lhc^{*}a^{*}+2U_{12}hka^{*}b^{*})\right]$$

(Cruickshank, Pilling, Bujosa, Lovell & Truter, 1961), the residual dropped to 0.073. A three-dimensional difference synthesis was calculated; this indicated regions of electron density at the positions expected for the hydrogen atoms attached to the phenyl rings. A region of density between the oxygen atoms involved in the hydrogen bonding indicated that the hydrogen was associated with O(2).

During the subsequent refinement the hydrogen atoms were fixed at distances of 1.08 Å for those attached to the phenyl rings and at 0.97 Å for the hydrogen attached to O(2). The individual scale factors for the batches of data were refined twice. The weighting

scheme
$$w = 1 / \left\{ 2|F_{\min}| + |F_o| + \frac{2|F_o|^2}{|F_{\max}|} \right\}$$
 was employed.

The final residual for the 1471 observed reflexions was R=0.06. A final Fourier summation and a difference synthesis were calculated. Slight regions of density were observed around the iodine atoms and between the planes of the two molecules.

The final structure factors are given in Table 2. Those reflexions which were not observed in the region of reciprocal space examined are marked with a zero in the F_o column.

Table 3 gives the heavy-atom coordinates and Table 4 the corresponding thermal parameters. The hydrogen-atom parameters are quoted in Table 5. The numbering of the atoms in the molecules and the arrangement of the molecules in the unit cell viewed along the c axis are shown in Fig. 1. All intermolecular contacts of less than 3.6 Å are given in Table 6 and the bond lengths and angles with some of the intramolecular non-bonded distances in Table 7. The equations of the ring system C(1)-C(6), C(7)-C(12), and the group C(10), C(13), O(1) and O(2) calculated with respect to the orthogonal triad $\mathbf{a}', \mathbf{b}', \mathbf{c}'$, where \mathbf{b}' coincides with \mathbf{b} , \mathbf{a}' is the projection of \mathbf{a} on a plane perpendicular to \mathbf{b}' and \mathbf{c}' is perpendicular to \mathbf{a}' and \mathbf{b}' , and the deviations of the atoms from the planes, are given in Table 8.

Table 3. Non-hydrogen-atom positional paramete rs

(a) Final coordinates with their estimated standard deviations (in parentheses).

	x	У	Z
I	0.7424 (1)	0.5385 (05)	0.9609 (2)
O(1)	0.1909 (11)	-0.0057(5)	-0.2292(25)
O(2)	0.0118 (11)	0.0973 (5)	-0.2946(26)
C(1)	0.6226 (11)	0.2714(6)	0.8333 (25)
C(2)	0.6229 (11)	0.3578 (6)	0.8079 (27)
C(3)	0.7391 (12)	0.4091 (7)	1.0196 (28)
C(4)	0.8638 (12)	0.3770 (8)	1.2815 (28)
C(5)	0.8599 (14)	0.2891 (8)	1.3021 (30)
C(6)	0.7428 (15)	0.2390 (8)	1.0859 (33)
C(7)	0.4995 (11)	0.2173 (6)	0.5900 (26)
C(8)	0.5363 (13)	0.1372 (6)	0.4958 (31)
C(9)	0.4222 (13)	0.0875 (6)	0.2647 (29)
C(10)	0.2675 (12)	0.1186 (6)	0.1086 (28)
C(11)	0.2291 (13)	0.1978 (6)	0.2042 (30)
C(12)	0.3414 (13)	0.2468 (6)	0.4344 (29)
C(13)	0.1503 (13)	0.0650 (6)	-0.1461(28)

Table 3 (cont.)

(b) Orthogonal coordinates with respect to the axes:

 $X' = X \sin \gamma + Z (\cos \beta - \cos \alpha \cos \gamma) / \sin \gamma$

 $Y' = Y + X \cos \gamma + Z \cos \alpha$ $Z' = Z \sin^2 \alpha \qquad (1000 \ \theta = 000 \ \pi = 000)$

 $Z' = Z[\sin^2\alpha - \{(\cos\beta - \cos\alpha\cos\gamma)/\sin\alpha\}^2]^{1/2}$

	X'	Y'	Ζ'
I	5·044 Å	8∙340 Å	3·960 Å
O(1)	1.965	-0.034	-0.945
O(2)	0.515	1.620	-1.214
C(1)	4.192	4.118	3.434
C(2)	4.230	5.500	3.330
C(3)	4.933	6.266	4.202
C(4)	5.640	5.690	5.281
C(5)	5.577	4·286	5.366
C(6)	4.873	3.541	4.475
C(7)	3.473	3.316	2.432
C(8)	3.922	2.063	2.043
C(9)	3.263	1.329	1.091
C(10)	2.151	1.862	0.447
C(11)	1.686	3.099	0.842
C(12)	2.330	3.824	1.791
C(13)	1.499	1.070	-0.605

Discussion

It has been convenient in the analysis of similar compounds to define five angles of rotation. These are rotation of one ring with respect to the other by an angle Φ , about C(1)-C(7); rotation of ring C(1)-C(6) by Φ_2 about an axis which is in the plane of that ring and passes through C(1) perpendicular to C(1)-C(7); rotation of ring C(7)-C(12) by angle Φ_3 about an axis which is in the plane of that ring and passes through C(7) perpendicular to C(1)-C(7); rotation of the carboxyl group by Φ_4 about C(10)–C(13) and finally a rotation of the carboxyl group by Φ_5 about an axis through C(10) in the plane of the group and perpendicular to C(10)–C(13).

Starting with a planar molecule and looking along the line from C(4) towards C(13), Φ_1 and Φ_4 are positive for clockwise rotations of C(2) and O(2). The signs of Φ_2 , Φ_3 and Φ_5 are positive for clockwise rotations of the respective rings when C(4) is to the left of the view point.

Although biphenyl in the solid state is planar the introduction of an iodine atom in the 2' position causes

Table 4. Thermal parameters $(Å^2 \times 10^3)$ for the nonhydrogen atoms

	U_{11}	U_{22}	U_{33}	$2U_{12}$	$2U_{13}$	$2U_{23}$
I	55 (1)	47 (1)	39 (1)	-5(11)	10(1)	2 (1)
O(1)	65 (6)	43 (5)	59 (7)	37 (8)	-16(9)	23 (8)
O(2)	60 (5)	38 (4)	70 (7)	35 (6)	6 (9)	2 (8)
C(1)	37 (5)	39 (5)	13 (7)	2 (7)	31 (7)	39 (8)
C(2)	29 (5)	46 (5)	23 (7)	7 (7)	17 (7)	13 (8)
C(3)	37 (5)	49 (5)	19 (7)	10 (8)	20 (8)	6 (9)
C(4)	30 (5)	67 (8)	20 (7)	20 (9)	7 (10)	16 (10)
C(5)	50 (6)	61 (6)	18 (8)	25 (10)	27 (8)	47 (10)
C(6)	53 (6)	37 (5)	51 (9)	40 (9)	45 (11)	42 (10)
C(7)	37 (5)	31 (4)	24 (7)	18 (7)	27 (8)	50 (8)
C(8)	46 (5)	30 (4)	43 (8)	22 (8)	36 (10)	63 (9)
C(9)	49 (6)	28 (4)	38 (8)	17 (8)	41 (10)	71 (9)
C(10)	39 (5)	31 (4)	34 (8)	8 (7)	26 (9)	52 (8)
C(11)	41 (5)	30 (4)	37 (8)	18 (7)	18 (9)	34 (8)
C(12)	43 (5)	33 (5)	30 (7)	20 (8)	30 (9)	43 (8)
C(13)	57 (6)	26(4)	29 (8)	14 (8)	27 (10)	96 (8)

Table 5. Coordinates of the hydrogen atoms

H(1) is attached to O(2) and the numbering of the remaining hydrogen atoms corresponds to that of the carbon atoms to which they are attached.

	x	У	Z
H(1)	-0.033	0.063	-0.470
H(2)	0.531	0.385	0.604
H(4)	0.960	0.420	1.470
H(5)	0.952	0.262	1.490
H(6)	0.745	0.171	1.114
H(8)	0.655	0.112	0.620
H(9)	0.421	0.025	0.190
H(11)	0.105	0.222	0.095
H(12)	0.310	0.307	0.499

Table 6. Intermolecular distances between atoms less than 3.6Å apart

i	j	Equipoint indication	d_{ij}
O(1)	C(8)	\bar{x} \bar{y} \bar{z}	3∙569 Å
C(6)	C(7)	1 + x y 1 + z	3.519
C(9)	C(9)	$1 - x \bar{y} 1 - z$	3.556
O(1)	O(1)	\bar{x} \bar{y} $1-z$	3.387
O(1)	C(13)	\vec{x} \vec{y} $1-z$	3.392
O (1)	O(2)	\vec{x} \vec{y} $1-z$	2.611
O(2)	C(13)	\bar{x} \bar{y} $1-z$	3.417
C(1)	C(5)	x y 1+z	3.568
C(2)	C(4)	x y 1 + x	3.578
C(2)	C(5)	x y 1+z	3.584
O(2)	O(2)	\bar{x} \bar{y} $1-z$	3.463

a strain which results in a twisting of the rings through Φ_1 of 51.3°. When the substitution is in the 3' position this strain should not be present. However, a small ngle of twist might be expected due to a relayed sterica effect. The angle of $+30.4\pm0.5^{\circ}$ between the two phenyl rings is considerably smaller than that observed for 2' substituted compounds and less than the $+38.6^{\circ}$ observed for 4-acetyl-3'-bromobiphenyl (Sutherland & Hoy, 1969).

In the present structure the angles Φ_2 and Φ_3 are respectively $\pm 0.7 \pm 0.4$ and $-0.4 \pm 0.4^\circ$. Comparing these with the comparable values obtained in 4-acetyl-3'-bromobiphenyl it is found that Φ_2 is not significantly different from the value of $\pm 1.2 \pm 0.7^\circ$ whereas Φ_3 is significantly smaller than $-4.1 \pm 0.7^\circ$. The reduced values of Φ_1 and Φ_3 in this investigation are probably

Table 7. Bond lengths and angles with their e.s.d.'s

(a) Bond lengths	
(a) Bond lengths I — $-C(2)$ I — $-C(3)$ I — $-C(4)$ O(1)-C(9) O(1)-C(10) O(2)-C(10) O(2)-C(10) O(2)-C(11) O(2)-C(13) C(1)-C(2) C(1)-C(6) C(1)-C(7) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(7)-C(8) C(7)-C(8) C(7)-C(12) C(8)-C(9) C(9)-C(10) C(10)-C(11) C(10)-C(13)	3.021 (10) Å 2.091 (11) 3.020 (11) 2.773 (15) 2.360 (14) 1.246 (15) 2.345 (14) 2.790 (15) 1.283 (15) 1.386 (14) 1.371 (16) 1.471 (14) 1.357 (15) 1.413 (16) 1.408 (17) 1.359 (17) 1.386 (15) 1.406 (15) 1.371 (15) 1.371 (15) 1.371 (15) 1.386 (15) 1.371 (15) 1.379 (15) 1.468 (15)
(b) Bond angles I - C(3) - C(2) I - C(3) - C(4) C(1) - C(2) - C(3) C(2) - C(3) - C(4) C(3) - C(4) - C(5) C(4) - C(5) - C(6) C(1) - C(6) - C(5) C(2) - C(1) - C(6) C(6) - C(1) - C(7) C(2) - C(1) - C(7) C(1) - C(7) - C(8) C(1) - C(7) - C(12) C(8) - C(7) - C(12) C(7) - C(8) - C(9) C(8) - C(9) - C(10) C(8) - C(9) - C(10) C(9) - C(10) - C(11) C(9) - C(10) - C(13) C(11) - C(10) - C(13) C(10) - C(11) - C(12) C(7) - C(12) - C(11) C(7) - C(12) - C(11) C(10) - C(13) - C(12) C(7) - C(13) - C(12) C(10) - C(13) - C(12) - C(13) C(10) - C(13) - C(10) - C(13) C(10) - C(13) - C(10) - C(13) C(10) - C(13) - C(10) - C(13) - C(10) C(10) - C(13) - C(10) - C(13) - C(10) C(10) - C(13) - C(10) - C(13	$120 \cdot 9 (8)$ $117 \cdot 8 (8)$ $121 \cdot 9 (1 \cdot 0)$ $121 \cdot 3 (1 \cdot 0)$ $115 \cdot 5 (1 \cdot 0)$ $122 \cdot 1 (1 \cdot 1)$ $117 \cdot 6 (1 \cdot 0)$ $122 \cdot 0 (9)$ $120 \cdot 4 (9)$ $120 \cdot 4 (9)$ $120 \cdot 7 (9)$ $117 \cdot 5 (1 \cdot 0)$ $120 \cdot 7 (9)$ $117 \cdot 5 (1 \cdot 0)$ $120 \cdot 0 (1 \cdot 0)$ $118 \cdot 8 (1 \cdot 0)$ $118 \cdot 8 (1 \cdot 0)$ $118 \cdot 6 (1 \cdot 0)$ $122 \cdot 6 (1 \cdot 0)$ $122 \cdot 4 (1 \cdot 1)$ $120 \cdot 6 (1 \cdot 0)$

due to intermolecular forces. It is of interest that the molecules of 4-acetyl-3'-bromobiphenyl adopt a herring-bone configuration whereas the 3'-iodobiphenyl-4-carboxylic acid molecules lie in a series of chains. It is unlikely that the difference in the substituent in the 4 position will have such a large effect on Φ_1 and Φ_3 . There is for example no significant difference in Φ_1 or Φ_3 between 4-acetyl-2'-chlorobiphenyl (Suther-

Table 8. Mean planes of the ring systems

Plane I: C(1)-C(6)II: C(7)-C(12)III: C(10), C(13), O(1) and O(2)I 0.8127X' - 0.0736Y' - 0.5780Z' = 1.1147II 0.5778X' + 0.4192Y' - 0.7003Z' = 1.6937III 0.6120X' + 0.4281Y' - 0.6649Z' = 1.8078

Deviations	from	mean	planes
------------	------	------	--------

	Ι	II	III
Ι	0∙082 Å		
C(1)	0.004	0∙050 Å	0·237 Å
C(2)	-0.006		
C(3)	0.005		
C(4)	-0.005	0.252	0.568
C(5)	0.001		
C(6)	-0.005		
C(7)	0.059	0.001	0.121
C(8)		0.006	0.117
C(9)		-0.012	0.033
C(10)	0.238	0.017	0.009
C(11)		-0.010	-0.009
C(12)		0.001	0.065
C(13)	0.373	0.042	-0.032
O(1)		0.089	0.008
O(2)		0.133	0.008

land and Hoy, 1968) and 2'-chlorobiphenyl-4-carboxylic acid (Sutherland, 1969).

The angles Φ_4 of $\pm 1.4 \pm 0.7$ and Φ_5 of $-0.4 \pm 0.4^{\circ}$ are smaller than the corresponding values $\pm 2.9 \pm 1.2$ and $-2.1 \pm 0.8^{\circ}$ observed for 4-acetyl-3'-bromobiphenyl and apart from 4-acetyl-2'-fluorobiphenyl (Young, Tollin & Sutherland, 1968) are significantly smaller than obtained for 2 and 2' halogen substituted biphenyls. The magnitude of Φ_4 and Φ_5 would appear to depend on the position of the substituent; a 3' substituent might be expected to give a smaller relayed steric effect than a 2'substituent.

A stereo view of 3'-iodobiphenyl-4-carboxylic acid is shown in Fig. 2; from this it can be seen that the line of atoms C(4), C(1), C(7), C(10) and C(13) adopts a boat configuration.

The I-C(3) bond length of 2.091 ± 0.011 Å is possibly significantly longer than the value of 2.05 ± 0.01 Å quoted in *International Tables for X-ray Crystallography* (1962) but is not significantly different from the value of 2.122 ± 0.017 Å quoted for 2'-iodobiphenyl-4-carboxylic acid (Sutherland, 1970). The iodine atom is displaced by 0.082 Å from the plane of C(1)-C(6) representing an angle of 2.3° . A comparable displacement was observed for the bromine atom in 4-acetyl-3'-bromobiphenyl. Although several of the 2' halogen-substituted biphenyls also exhibited such a displacement, the iodine in 2'-iodobiphenyl-4-carboxylic acid remained in the plane of the ring with, however, a consequent increase in Φ_2 .

The exocylic C(10)–C(13) bond of 1.468 ± 0.015 Å and the C(1)–C(7) bond length of 1.471 ± 0.014 A are

Fig. 1. The arrangement of the molecules in the unit cell viewed along the c axis.

in good agreement with the value of 1.477 Å quoted by Cruickshank & Sparks (1960) for the (sp^2) singlebond length between trigonally linked carbon atoms and do not differ significantly from the values obtained for other halogen substituted biphenyls.

The O(1)–C(13) and O(2)–C(13) bond lengths of 1.246 ± 0.015 and 1.283 ± 0.015 Å were respectively longer and shorter than had been expected. The bond lengths are similar to those obtained in 2'-iodobiphenyl-4-carboxylic acid of 1.261 ± 0.010 and 1.289 ± 0.010 Å respectively.

The O-H···O bond of 2.61 Å which is the shortest intermolecular distance, is similar to the value quoted

Fig. 2. A stereo view of 3'-iodobiphenyl-4-carboxylic acid.

for 2'-iodobiphenyl-4-carboxylic acid of 2.60 Å. The bond angles C(10) - C(13) - O(1) - C(10) - C(13) - O(2) and O(1) - C(13) - O(2) are comparable with those found in similar compounds.

One of us (MJM) is indebted to the S.R.C. for the award of a Research Studentship. The authors wish to thank Dr P. J. Wheatley and Monsanto Research S. A. for kindly providing the Fourier programs; Dr G. W. Gray for providing the crystals used in the investigation and the SRC for the provision of a grant to purchase the Joyce-Loebl Flying Spot Densitometer.

References

- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LOVELL, F. M. & TRUTER, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
- CRUICKSHANK, D. W. J. & SPARKS, R. A. (1960). Proc. Roy. Soc. A 258, 270.
- International Tables for X-ray Crystallography. (1962). Vol. III. Birmingham: Kynoch Press.
- SUTHERLAND, H. H. (1969). Acta Cryst. B25, 171.
- SUTHERLAND, H. H. (1970). Acta Cryst. B26, 1217
- SUTHERLAND, H. H. & HOY, T. G. (1968). Acta Cryst. B24, 1207.
- SUTHERLAND, H. H. & HOY, T. G. (1969). Acta Cryst. B25, 2385.
- Young, D. W., Tollin, P. & Sutherland, H. H. (1968). Acta Cryst. B24, 161.

Acta Cryst. (1972). B28, 2217

The Crystal and Molecular Structure of Potassium Hydrogen DL-Methylsuccinate

BY Y. SCHOUWSTRA

Laboratorium voor Kristalchemie, Rijksuniversiteit Utrecht, Catherijnesingel 51, Utrecht, The Netherlands

(Received 22 December 1971)

The structure of potassium hydrogen DL-methylsuccinate [KO₂C.CH(CH₃).CH₂.CO₂H] was determined from three-dimensional X-ray data. The crystals are monoclinic with a=11.927, b=6.217, c=9.731 Å, $\beta=105.65^{\circ}$, Z=4, space group $P2_1/c$. The structure was solved by direct methods and was refined by a block-diagonal least-squares procedure to R=0.040. The succinic acid skeleton of the acid methylsuccinate ion is bent. The short intermolecular hydrogen bond with O(H)...O distance of 2.543(3) Å is acentric.

Introduction

We started this investigation because we were interested in the molecular conformation of the acid DL-methylsuccinate ion and in the intermolecular hydrogen bonding of acid salts of carboxylic acids in general.

In addition, knowledge of the molecular conformation might be helpful to our interpretation of the Patterson synthesis of DL-methylsuccinic acid, the structure of which has proved to be difficult to determine because of poor crystals and the lack of reliable data.

Experimental

Crystals of potassium hydrogen DL-methylsuccinate were obtained by the slow evaporation, at room